Defectivity prediction for droplet-dispensed UV nanoimprint lithography, enabled by fast simulation of resin flow at feature, droplet and template scales

Hayden Taylor

Department of Mechanical Engineering
University of California, Berkeley
and Simprint Nanotechnologies

February 23, 2016

hkt@berkeley.edu
Outline: droplet-dispensed NIL simulation

• Modeling objectives and key phenomena in droplet-dispensed NIL (JFIL)
• Capillary-driven droplet-spreading model
• Scalable model for merging of droplet arrays
• Integrated full-field simulation of JFIL
 • Template edge effects
 • Wafer edge effects
 • Template curvature and avoiding gas entrapment
Droplet-dispensed simulation involves template approach, spreading and holding phases.

1: Template approach (Constant velocity)

2: Relax template curvature (constant load)

3: Hold template load constant

Optimize through simulation for speed and defectivity
The key to the simulation technique: model the impulse response $g(x,y,t)$ of the resist layer

Spatial response of resist

Mechanical impulse applied uniformly over small region at time $t = 0$

Resist layer

Wafer

Temporal response

Newtonian: impulse response constant in time for $t > 0$

Viscoelastic: impulse response is function of time.

Change in topography is given by convolution of impulse response with pressure distribution $p(x,y,t)$.

$$\frac{\Delta}{\Delta t} = \left[p(x, y, t) \ast g(x, y, t) \right] \Delta t = 1$$
Layer-thickness reductions and cavity filling are represented through time-stepping.

Tall cavities: no filling

Finite-height cavities

Limiting value of r: cavities completely filled
Elastic stamp deformations are composed of local deflections, shear, and plate bending.

Local deflections
- Modulus-dependent
- Largely thickness-independent

Local and bending deflections
- Modulus-dependent
- Thickness-dependent

Local deflections:
- E_{stamp}
- $E_{\text{substrate}}$
- λ
- t_{stamp}

Local and bending deflections:
- (log axes)
- Relative stamp deflection
- Bending
- 1 µm

Examples:
- e.g. bit-patterned hard disk
- e.g. microprocessor

Typically $t_{\text{stamp}} \sim 0.5$ mm
The model captures spatial interactions in the imprinting of heterogeneous patterns

NIL test pattern
(broad mixture of feature shapes, sizes, and densities)

- **Cavities** (~500 nm deep)
- **Protrusions**

Simulated RLT

PMMA 35 kg/mol

Residual layer thicknesses (nm)

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 °C, 6 min, 5 MPa</td>
<td></td>
</tr>
<tr>
<td>165 °C, 4 min, 3.5 MPa</td>
<td></td>
</tr>
<tr>
<td>180 °C, 2 min, 5 MPa</td>
<td></td>
</tr>
</tbody>
</table>

- **Long rectangles, 0°**
- **Long rectangles, 90°**
- **Square holes**

Feature pitch 100 µm

Protrusion density (% area)
Droplet spreading is driven by capillary and external loads, and can be highly directional.

- Feature, droplet and chip length scales span 6 to 7 orders of magnitude – multiscale modeling is essential.
- *Virtual work* concept used to capture work done by capillary forces.
Droplet spreading is driven by capillary and external loads, and can be highly directional.

- When droplet spreads beneath arrays of parallel lines, the resist impulse response is anisotropic, modeled with the following proportion of resist displacement directed parallel to the lines:

\[k_{\text{parallel}} = 0.75 + 0.25 \tanh \left(1.5 \log_{10} \frac{0.5h}{r} \right) \]

\[\text{Cavity height} \quad \text{RLT} \]

- Key parameters:
 - Extent of pattern on stamp
 - Protrusion density
 - Feature pitch (μm)
 - Residual layer thickness
 - ≥ 100 nm
 - 10 nm
 - ≤ 1 nm

- Elapsed imprinting time:
 - 0.01 s
 - 0.1 s
 - 1 s
 - 10 s
 - 30 s
The spreading and merging behavior of regular arrays of droplets can be aggregated.

Example shown:
- Resin viscosity: 10 mPa.s
- External load: 40 kPa
- 1 pL droplets on 120 μm pitch
- Resin-template and resin-wafer contact angles: 15°
- Relationship captures both filling and RLT changes with time
Gas entrapment between merging droplets can be avoided by controlling template curvature

- Fix curvature, bring stamp down under constant load, and droplets merge.
- If gas is entrapped, dissolution model would be needed; but aim is to avoid entrapment.
The time evolution of residual layer and cavity filling can be compared for multiple processes.

- Example pattern, 30 mm x 40 mm template = single imprint field
- 1 pL droplets; target RLT 25 nm
- Constant approach velocity of 50 μm/s until load of 50 N reached
- Load then maintained while template curvature relaxed over 1 second
The time evolution of residual layer and cavity filling can be compared for multiple processes.
Extrusion of resist at template edge can be simulated and optimized

- Material squeezed out from edge of template costs silicon real estate: simulations can predict this
- A slight surplus of template cavity volume in the border may be used to suppress resist extrusion
Outlook

- JFIL simulation algorithm incorporating effects of pattern-dependent capillary pressures, external loads, and template bowing. Easily scales to >10,000 droplets.
- Predicts RLT uniformity and template filling evolution
- Provides insights into template edge extrusion and likelihood of gas entrapment
- Simulation speed and resolution can be tuned
 - For a 30x40 mm field simulated on an Intel i7, 8 GB RAM:
 ~5 seconds at 1 mm resolution; ~5 mins at 0.1 mm resolution
- Detailed (pre-)production data needed for model calibration
 - Locations and frequencies of defects within imprint fields, and spatial maps of RLT
 - Data needed for multiple template curvature relaxation cases and spread/hold times
Upcoming developments include integrated multiscale simulations and user-defined models.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Company founded</td>
<td>Spun-on UV-NIL simulation</td>
<td>Droplet-dispersed UV-NIL module</td>
<td>Roll-to-roll module</td>
<td>Support for user-defined filling models</td>
<td>Process Advisor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dec 2010</th>
<th>Dec 2014</th>
<th>March 2016</th>
<th>Early 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>First product: chip-scale TNIL simulation</td>
<td>Multi-layer template module; multi-height cavities</td>
<td>Simprint Multiscale (integrated feature-to-wafer-scale simulation) and Gas dissolution and condensation module</td>
<td>Design Advisor</td>
</tr>
</tbody>
</table>

Oct 2010, Code copyright licensed from MIT.

\[^1\text{Youn et al., Jpn. J. Appl. Phys. 52 06GJ07}\]
Collaborators and acknowledgements

• **MIT**
 - Duane Boning
 - Matt Dirckx
 - Eehern Wong
 - Melinda Hale
 - Aaron Mazzeo
 - Lallit Anand
 - Shawn Chester
 - Nici Ames
 - James Freedman

• **NILT, Copenhagen**
 - Theodor Nielsen
 - Brian Bilenberg
 - Kristian Smistrup

• **UC San Diego**
 - Yen-Kuan Wu
 - Andrew Kahng

• **HTL Co Ltd, Japan**
 - M. Kato and M. Tsutsui

• **NTU, Singapore**
 - Lam Yee Cheong

• **IBN, Singapore**
 - Ciprian Iliescu, Bangtao Chen, Ming Ni

• **Funding**
 - The Singapore-MIT Alliance
 - Danish National Advanced Technology Foundation

• **Helpful discussions**
 - Hella Scheer, Andre Mayer, Derek Bassett, Roger Bonnecaze, Siddharth Chauhan, Grant Willson, Yoshihiko Hirai, Wei Wu, S.V. Sreenivasan